p-Fluorophenylalanine-Induced Restriction of Ion Uptake and Assimilation by Maize Roots.
نویسندگان
چکیده
Roots of decapitated maize seedlings (Zea mays L.) were exposed for 12 hours to 1.0 millimolar KNO(3) (98.5 atom per cent (15)N) in the presence and absence (control) of 0.1 millimolar p-fluorophenylalanine (FPA), an analog of the amino acid phenylalanine. FPA decreased nitrate uptake but had little effect on potassium uptake. In contrast, accumulation of both ions in the xylem exudate was greatly restricted. The proportion of reduced (15)N-nitrogen that was translocated at each time was also restricted by FPA. These observations are interpreted as indicating that synthesis of functional protein(s) is required for nitrate uptake and for transport of potassium, nitrate, and reduced-(15)N from xylem parenchyma cells into xylem elements. The effect of FPA on nitrate reduction is less clear. Initially, FPA limited nitrate reduction more than nitrate uptake, but by 8 hours the cumulative reduction of entering nitrate was similar ( approximately 35%) in both control and FPA-treated roots. A relationship between nitrate uptake and nitrate reduction is implied. It is suggested that nitrate influx regulates the proportion of nitrate reductase in the active state, and thereby regulates concurrent nitrate reduction in decapitated maize seedlings.
منابع مشابه
Effect of azetidine 2-carboxylic Acid on ion uptake and ion release to the xylem of excised barley roots.
Azetidine 2-carboxylic acid (AZ) was used as an analog of proline to investigate further the relationship between protein synthesis and ion transport. AZ does not inhibit protein assembly, but the proteins formed are ineffective as enzymes. At relatively low concentrations (50 muM) AZ was a potent inhibitor of release of ions to the xylem of excised roots of barley (Hordeum vulgare L.) and inta...
متن کاملNitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs
Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expr...
متن کاملStimulated fine root growth benefits maize nutrient uptake under optimized nitrogen management
Optimized nitrogen (N) management reduces total N application without sacrificing cropyield. However, the underlining mechanisms have not been well investigated, especially lackingthe evidence from roots. Here we performed a two-year field experiment with maize grownunder zero-N, conventional N and optimized N applications and examined grain yield, N,phosphorous (P) and potassium (K) uptake and...
متن کاملThe Urease Inhibitor NBPT Negatively Affects DUR3-mediated Uptake and Assimilation of Urea in Maize Roots
Despite the widespread use of urease inhibitors in agriculture, little information is available on their effect on nitrogen (N) uptake and assimilation. Aim of this work was to study, at physiological and transcriptional level, the effects of N-(n-butyl) thiophosphoric triamide (NBPT) on urea nutrition in hydroponically grown maize plants. Presence of NBPT in the nutrient solution limited the c...
متن کاملCyanide acclimation in willow (Salix babylonica L.), a prospect for the phytoremediation of cyanide
Phytoremediation counts as a major method for future which essentially needs resistance to contaminating agents. We pretreated the plants (Salix babylonica, as a model plant in phytoremediation of polluted waters) by sodium cyanide (0, 3 and 5 mg CN- L-1) to induce resistance with regard to acclimation and then examined their resistance to higher concentrations of cyanide. Accordingly, some of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 77 3 شماره
صفحات -
تاریخ انتشار 1985